跳到主要內容

使用python繪製視覺化--堆疊區域圖


區域圖是基於折線圖延伸出的圖表,因此具有折線圖的優勢,一覽整體趨勢。相較於折線圖,區域圖還可透過面積來呈現數據多寡,做不同分類之間的比較。區域圖分為2種,堆疊區域圖與百分比堆疊區域圖,後者概念似百分比堆疊長條圖,以各個值所佔的百分比呈現。




在這基本概念下利用pythonPlotly套件來繪製堆疊區域圖。這次以腸病毒為主軸,在開始操作前先做個知識補充,對腸病毒有個基本概念。

腸病毒基礎概念:

往年隨著開學季開始,總能在新聞報導上看到腸病毒的蹤跡,伴隨著家長的恐慌,我們對腸病毒的認知有多少?
n  病毒型態:腸病毒屬於小RNA病毒科,可以分成5種類型,小兒麻痺病毒、
    克沙奇病毒
A型、克沙奇病毒B型、伊科病毒、腸病毒68-71型,其特性因為生長於
    腸胃道而總稱為腸病毒。
n   傳染途徑:3種,糞口傳染、飛沫傳染以及接觸傳染。
n   疾病症狀:感染者多數不會出現症狀或出現發燒等類似一般感冒的輕微症狀。常
     引起手足口病及疱疹性咽峽炎,有些時候則會引起一些較特殊的臨床表現,包括
     病毒性腦炎、無菌性腦膜炎、心肌炎、肢體麻痺症候群、急性出血性結膜炎、
     腦炎或急性無力脊髓炎等。三歲以下幼童感染則要特別注意,容易併發腸病毒重症。


n    流行情況:不見得每年皆會發生腸病毒大流行,但腸病毒的流行的情況具有季節性,5月開始疫情逐漸升溫,6-7月達到流行高峰期。台灣位於亞熱帶地區,所以全年皆有病例發生。疾管署例行性針對腸病毒感染病例檢出之病毒型別進行監測,如果大家有興趣可以到疾管署的網站上了解疫最新的情資訊。





操作步驟
1.選定主題,準備素材
2018年每週腸病毒病毒分離型別為例(資料來源為疾管署開放資料),來看腸病毒的趨勢以及型別的變化。開始執行前,尚未安裝plotly者需要先安裝plotly套件,在Window環境下,開起命令提示字元,輸入pip install plotly,安裝完成後,就可進入繪圖步驟。
2.確認繪圖需要用到的參數:
X(x):(week)
Y(y):各腸病毒型別檢出數

3.繪製堆疊區域圖
操作時每一個分層要各別建構(例如:每個病毒型別都要分別建構),再把各分層的圖層結合成一張圖。
import plotly.graph_objs as go
import plotly.offline as py
trace0 = dict(
    x=df["Year-Week of Specimen Receipt"],
    y=df["EV71"],
    hoverinfo='x+y',
    mode='lines',
    name = 'EV71',
    line=dict(width=0.5,
              color='#B5CAA0'),
    stackgroup='one'
)
trace1 = dict(
    x=df["Year-Week of Specimen Receipt"],
    y=df["ECHO"],
    hoverinfo='x+y',
    mode='lines',
    name = 'ECHO',
    line=dict(width=0.5,
              color='#5DAC81'),
    stackgroup='one'
)
trace2 = dict(
    x=df["Year-Week of Specimen Receipt"],
    y=df["CB"],
    hoverinfo='x+y',
    mode='lines',
    name = 'CB',
    line=dict(width=0.5,
              color='#00896C'),
    stackgroup='one'
)

trace3 = dict(
    x=df["Year-Week of Specimen Receipt"],
    y=df["CA"],
    hoverinfo='x+y',
    mode='lines',
    name = 'CA',
    line=dict(width=0.5,
              color='#096148'),
    stackgroup='one'
)

trace4 = dict(
    x=df["Year-Week of Specimen Receipt"],
    y=df["NPEV"],
    hoverinfo='x+y',
    mode='lines',
    name = 'NPEV',
    line=dict(width=0.5,
              color='#0B1013'),
    stackgroup='one'
)

data = [trace0, trace1, trace2, trace3, trace4]

fig = dict(data=data)
plot(fig, filename='stacked-area-plot-hover', validate=False)

留言

這個網誌中的熱門文章

如何快速註冊統合分析題目~以PROSPERO為例

初步檢索心中的愛 當心目中有一個理想題目時,為避免地球上另一個人也同時跟你想的一樣,而且還比我們早發表,若等我們發表時才發現,當下一定很扼腕,有了註冊系統除了幫自己先占好位子,也可以同時確認這個題目是否已經有人正在做了,不用浪費時間投注在上面。很多人其實不曉得實際上到底要如何註冊,以下一起註冊吧。 什麼是 PROSPERO??   PROSPERO (International prospective register of systematic reviews) 是一個國際前瞻性系統性文獻回顧評價系統,由美國國立衛生研究院 NIHR ( National Institute for Health Research )資助,由英國約克大學 CRD(Centre of Reviews and Dissemination) 創立,針對將已完成的評價或正進行中的計畫做紀錄。 目的:避免重複並減少報告偏見的機會,增加透明性。                 步驟流程 Step 1 :檢索主題 先確認其他人是否對這主題感興趣,有人捷足先登了嗎 ?? 也可以確認目前流行的趨勢是哪類型的研究等。 Step 2 :註冊帳號 ID 先到 PROSPERO 官網 ,填寫基本資料後註冊 ID 。 Step 3 :點選註冊文獻 review 要需先有帳號後才能註冊題目,進入頁面後依指示一步一步操作。 以下是網頁步驟,依研究對象是人群還是動物選擇按鈕點選,一般我們都是人群研究,選紫色。同時須確認以下五步驟是否都經過檢驗了。 第 1 步 檢查納入標準。 第 2 步 確保您的 protocol 處於(接近)最終形式。 第 3 步 搜尋 PROSPERO ,以確保評論尚未被註冊。 第 4 步 搜尋 PROSPERO ,以確保您沒有不必要地重複由另一個團隊進行的審核或先前已註冊的審核 第 5 步 開始註冊 Step 4 :點選相關事前準備工作進度。 這裡有一系列問題須皆回答完,才能進行下一步...

Python與SAS資料處理入門-變項合併與名稱修改

將舊有的變項合併創建新變項 在處理大數據時常常會遇到需橫跨多個資料庫間進行資料串連,因此可能會遇到幾個問題 : (1) 不同資料庫間串連的鍵值欄位可能有多個,例如 :ID 與生日相同的資料才可互相串連。 (2) 不同資料庫間串聯的鍵值不盡相同。 (3) 要串聯的檔案之間有名稱相同的欄位,前幾篇文章有提到欄位合併的處理在 SAS 的語法上要注意檔案合併時欄位名稱相同會覆蓋的問題。 針對第 1 跟第 2 個問題,可先依據串聯不同資料庫鍵值的欄位需求先合併成一個 unique id ,後續直接用這個鍵值進行串連。合併後的新鍵值除了做為串檔用外,當資料處理時遇到原先鍵值不 unique 的情況,也會 透過變項合併產生新的 unique id 來取代原先的 id 鍵值 。 對於問題 3 ,檔案合併遇到命名相同的欄位產生 相互覆蓋 的問題,這部分會透過變更名稱的方式來處理。 以簡單例子進行練習 手上有 2 種檔案 : (1) 調查的基本資料,裡面包含 ID 、 Gender 、 Birthday 、 City( 戶籍地 ) 等資訊。 (2) 調查的結果,裡面包含 ID 、 Birthday 、 City( 收案地點 ) 、 Q_date( 受訪日期 ) 以及問卷題項。 問題 1: 鍵值不 unique 觀察第一份資料可以發現 ID 編號為 007 的有兩個且生日不同,因此判定可能是不同的人,編號重複編列,在這樣的情況下如果僅用 ID 串聯結果可能會是這樣。 在基本資料 (A) 的那兩筆 ID 為 007 的資料同時都會與調查結果 (B) 中 ID 為 007 那筆資料串連,但很明顯的是 B 資料的 007 合併生日判斷後可以發現不屬於 A 檔另一筆 007 的數據,因此原本 unique 的 ID 不為 unique ,因此合併 ID 與 Birthday 成為一個新的 unique ID 做為鍵值。 問題 2: 不同檔案有相同的名稱 這兩個檔案中有 2 個欄位名稱相同, Birthday 與 City 。在考量 Birthday 與 ID 將合併為新鍵值後,可暫擱一邊不需特別處理。但 City 部分的問題就比較大了,雖名稱相同但實際上代表的含意不同,如...

python與SAS資料處理-歸人與排除重複

  歸人顧名思義就是將一個人多筆的資料整合,每人只留下 1 筆。   通常取得的資料都是原始資料,並未經過整理。例如手上有疑份顧客購物紀錄,裡面有每個顧客在這 1 年內的每筆消費紀錄,這是一份以每次消費紀錄為 1 筆的紀錄形式,所以一個人可以有多筆的消費紀錄。當我們想要知道這些消費紀錄源自於多少顧客的購買時,這時候就需要用到歸人的概念,將資料轉換為每一個人只有 1 筆資料的紀錄形式 ( 如下圖所示 ) 。 以 SAS 進行資料歸人 歸人留 1 筆消費紀錄 proc sort data =cost; by ID time; run ; /* 在規筆前依照 ID 跟消費日期做排序 */ data cost_1; set cost; by ID; if first.id; run ;   /* 保留第一筆資料 */   之前已經有針對 proc sort 的排序語法進行說明,有需要可參考這篇 文章 , SAS 排序的設定值為升冪,也就是說每個人都會從最早那次的紀錄開始往後排序,所以用 first.id 就可以留下每個人最早那次的消費紀錄。 這邊也可以用排除重複的概念保留 1 筆資料 proc sort data =cost out =cost_2 nodupkey ; BY ID; run ; 利用 nodupkey ,將 ID 重複的資料刪除,僅保留每個 ID 第一次出現的該筆紀錄。   歸人累計所有消費金額 proc sort data =cost; by ID time; run ; data cost_1; set cost; by ID; if first.id then count= 0 ;/* 每個人第一筆資料都令 count=0*/ count+NT;/* 同 ID 累計 NT 數值 */ if last.id; run ;   除了要歸人以外,還要累計每個仁所有的消費金額,所以這邊就會創建一個 count 欄位,每一個人的第一筆 ID 令 count=0 ,在同樣 ID 時累加 NT 的數值,最後每個人保留最後一筆 ID ,也就是最後累計的總額。 以 Python 進行資料歸人...