Upset plot 將集合視覺化,特別是當集合數大於 5 的時候, Upset plot 相較於 Venn plot 可以更清楚的呈現。 Upset plot 來自於 Venn plot 的變化, Venn plot 較常用於生物資訊呈現 ( 圖 1-3) ,但是往往會遇到集合數太多不易呈現的情況,從下圖可清楚看到當集合數為 4 的時候,畫面已經有些複雜,所以 Venn plot 的缺點就是當集合數過多時,畫面所呈現的資訊反而會造成視覺上的負擔,增加訊息解讀的困難性,失去視覺化的意義 — 方便閱讀,因此當集合數 ≥5 時不建議使用 Venn plot ,而後衍生出 Upset plot 。 Upset plot 優勢在於當集合數 ≥5 時可以清楚呈現資訊,不會造成視覺上的混亂。 2020 年影響全球的 COVID-19 ,在面對未知的流行病時沒有人可以確定真正有效的治療物,因此優先挑出具有高度可能性的藥物,嘗試用於治療病患,在高度不確定性的情況下會產生多種治療組合,這樣的情況就很適合採用 Upset plot 呈現 Real World 用藥資料,這裡有一篇發表於 CANCER DISCOVERY 的文章 ,這是一個很好的實務範例 ( 圖 4) ,以下擷取這篇 paper 的部份數據,簡單的做個 Upset plot 。 操作步驟 1. 選定主題,準備素材 以這篇文章中的數據來畫 Upset plot 圖 。開始執行前,需要先安裝 Upset plot 的套件。在 Window 環境下,開起命令提示字元,輸入 pip install upsetplot ,安裝完成後,就可進入繪圖步驟。 2. 繪製 Upset plot 這邊帶入 paper 中前 10 筆的數據。 from upsetplot import generate_counts from upsetplot import plot from upsetplot import from_memberships example = from_memberships([['Azithromycin','Hydroxychloroquine'], ['Hydroxychloroquine'...